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The specific heat of Fermi�Pasta�Ulam systems has until now been estimated
through the energy fluctuations of a suitable subsystem, and opposite answers
were apparently provided concerning its possible vanishing for vanishing tem-
peratures. In the present paper a more ``realistic'' numerical implementation of
the specific heat measurement is discussed, which mimics the interaction of the
FPU system with a calorimeter. It is found that there exists a ``freezing'' critical
temperature below which the relaxation times to equilibrium between FPU
system and calorimeter become relevant, so that the system presents aging and
hysteresis features very similar to those familiar in glasses and spin glasses. In
particular, in the framework of such a point of view involving finite long times,
the specific heat appears to vanish for vanishing temperatures.
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1. INTRODUCTION

It is very well known that systems of Fermi�Pasta�Ulam type present an
energy threshold Eeq for equipartition among the normal modes (see, for
example, refs. 1�5). Moreover, Eeq appears to be extensive, i.e., propor-
tional to the number N of degrees of freedom, so that there is defined a
specific critical energy ueq=Eeq �N which should not vanish in the thermo-
dynamic limit.(6, 7) So one is confronted with the problem of deciding
whether the specific energy threshold ueq is relevant or not for statistical
thermodynamics, typically for the specific heat.

This problem was already addressed in two papers, where opposite
answers were apparently given: according to ref. 8 the specific heat would
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be insensitive to the equipartition threshold, i.e., would essentially keep the
constant ``classical'' Dulong�Petit value even at low temperatures, while it
would tend to zero for vanishing temperatures according to ref. 9. The
reason for the difference of the results is not completely clear. Apparently,
in the two papers different implementations are given for the specific heat
measurement. In either work one makes use of the familiar formula relating
specific heat to energy fluctuations: one considers an isolated FPU system,
the temperature of which is defined through the initial data, and one looks
at the energy fluctuations of a suitable small subsystem. The difference is
that the subsystem is defined through pure configuration space localization
in ref. 8, and through pure momentum space localization in ref. 9; namely,
the subsystem is in ref. 8 a group of nearby particles (actually, averages
were taken over several such groups), and in ref. 9 a group of normal
modes of the global system with nearby frequencies (actually, with exactly
equal frequencies, in virtue of a degeneration occurring in the particular
model considered). It is not clear to us which choice for the subsystem
should be preferred; for example an intermediate choice was made in the
celebrated paper known under the name of dreima� nnerarbeit, (10) where the
isolated system was a linear string. A reconsideration of the theoretical
basis for the formula relating specific heat and energy fluctuations for
energies lower that the equipartition threshold seems thus to be in order,
and we hope to come back to this interesting problem in the future.

In any case, a confrontation with such a general question led us to the
main idea underlying the present work: namely, to cope with the problem
of choice of the subsystem in a very drastic and quite natural way, by mak-
ing recourse, for the definitions of temperature and of specific heat, to the
familiar calorimetric ones, involving the interaction of the system whose
specific heat has to be measured with an external calorimetric substance.
This idea was implemented through a one-dimensional model (inspired by
the classical works(11�13) of Poincare� and Kelvin) where the calorimetric
substance is an ideal gas adjacent to the FPU system (mimicking a crys-
tal); the energy exchanges between crystal and gas occur through the
extreme crystal's particle adjacent to the gas, which is left free to interact,
through a realistic potential, with all gas particles (the other extreme par-
ticle of the crystal is instead kept fixed). In such a model the calorimetric
substance then acts also as a thermometer, the temperature being defined
through the average kinetic energy of the gas, as in ref. 12; in turn, the
specific heat CV of the crystal is just defined by CV =�U��T, where U is the
time average of the energy E of the FPU system. This mathematical model
for the implementation of a specific heat measurement seems to be more
realistic. In particular it takes into account the fact that in the traditional
specific heat measurements one never makes reference to the energy of
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the crystal, and the only observed quantity is the temperature of the
calorimetric substance; analogously, in our case, the variations of the crys-
tal energy can be inferred, through energy conservation, from the varia-
tions of the gas energy, so that we too are in principle considering as
observable quantity only the temperature of the calorimetric substance.

Now, it turned out that in actually dealing with such a model we were
somehow forced to take conscience of a question of principle concerning to
specific heat measurements, related to the relevance of the dependence of
the results on the observation time. This led us to discover an analogy with
the phenomenology of glasses and spin glasses, involving aging and meta-
stability, which perhaps constitutes the main contribution of the present
paper. In fact, the figures reported below to illustrate our results bear a
strong resemblance to some figures drawn by Parisi, during a conference
on spin glasses, (14) which had some influence on our work. The reason for
such an analogy is that in our model a high nonuniformity is the time
required to reach equipartition between calorimetric substance and crystal
is manifested as temperature T is decreased (or a characteristic frequency
| of the system is increased). Indeed, in the extremely simplified version of
the model (which we call the Poincare� model��see ref. 11) where the FPU
system is reduced to just one linear spring and the calorimeter to just one
gas particle, it is very well known that the relaxation time { has an
exponential-like dependence on | and on 1�T;(15) moreover analytical
estimates of such a type were also proven for models involving N equal fre-
quencies, with some parameters independent of N.(16)

The dependence of the results on the observation times is manifested
in the following way. To implement a specific heat measurement, first of all
we let the compound system (crystal+gas) go to equilibrium (or at least
to a practical one), and the temperature of the crystal is just defined as
coinciding with that of the gas. Then, in order to estimate �U��T one has
to look at the global energy 2E which the FPU system actually exchanges
with the gas, if the gas temperature is initially altered by an amount 2T.
The problem is then how much time is one allowed to wait, and in general
how the results depend on the ``measuring or waiting time.'' The most
impressive result we find is the existence of a ``freezing energy'' threshold
Ef , or equivalently of a ``freezing temperature'' Tf (in principle independent
of Eeq , although comparable to it in realistic cases), with the property that
the specific heat has the ``classical'' Dulong�Petit value for larger tem-
peratures, and a lower value for lower temperatures, apparently decreasing
to zero for vanishing temperatures. Namely, while above Tf equipartition
is obtained quite independently of the waiting time, below Tf the results
depend very strongly on it. Moreover, phenomena analogous to hysteresis,
metastability and aging are observed.
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One should then understand whether such a glassy behavior for crys-
tals is an artifact of our model or has a physical counterpart. This is a very
interesting open problem, which can be investigated both from an
experimental and from an analytical point of view.

Our results are described in the next section, which also contains some
more details on the model, and a brief discussion then follows.

2. THE MODEL AND THE RESULTS

The FPU system (crystal) and the gas are taken with the same num-
ber N of moving particles, all of the same mass m, on a line. The FPU
system consists in fact of N+1 particles P0 ,..., PN , the extreme particle P0

being fixed at say the origin, while the other extreme one PN (say to the
right) is free to move on the line. The N gas particles move to the right of
PN with no mutual interaction among them, up to a fixed wall (say a dis-
tance L from the origin), from which they are reflected, while they suffer
smooth collisions with the boundary FPU particle PN . The interaction in
the FPU system is of nearest neighbor type due to nonlinear springs, the
interaction potential as a function of distance r being of the familiar form
V1(r)= 1

2}r2+ 1
3:r3 with positive parameters } and :; the interaction

potential between the boundary particle PN of the crystal and the gas
molecules is instead taken as

V2(r)==
e&2(r�_)2

r�_
(1)

with positive parameters = and _, which we consider as constituting the
characteristic energy and length of the system. In order to mimic ``realistic''
situations, for the parameters } and : entering the FPU potential V1 we
take rather large values, precisely }=400 and :=3742; these values are
determined by the condition that the interaction potential V1 coincide with
a third order expansion about the minimum of a Lennard�Jones potential
V(r)=4=[(_�r)12&(_�r)6] having the same parameters = and _ as the
``external'' potential V2 .

The final Hamiltonian is thus

H= :
N

i=1
_ p2

i

2
+V1(x i&1&x i )+

?2
i

2
+V2( y i&xN )&

where xi , pi denote position and momentum of the i th particle of the crys-
tal, yi , ?i position and momentum of the i th particle of the gas; these all
are real variables with the constraints x0=0, xN < yi<L, (i=1,..., N ),
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where L>0 denotes the position of the wall enclosing the gas, with which
reflecting collisions of the gas molecules occur. For future reference, we
recall that in the FPU system there is defined a characteristic time tmin ,
namely tmin=2?�|, where | is the maximum among the frequencies |k of
the linearized system,

|k=| sin \ k
N

?
2+ , k=1,..., N, |=2 - }

1
_ � =

m
(2)

We take mechanical units in which ==_=m=1; temperature units
are used such that kB=1, where kB is Boltzmann's constant. We will be
concerned with energy exchanges 2E between gas and crystal, and in
general a contribution to 2E also comes from the mechanical work per-
formed by the gas on the boundary FPU particle; for simplicity's sake, we
did limit ourselves to situations in which such an external mechanical work
is negligible, so that the exchanged energy 2E can in practice be identified
with the exchanged heat 2Q.

We come now to a description of the results. To start out we deter-
mined, in the familiar way, the equipartition threshold Eeq in the isolated
FPU system, and we found ueq#Eeq �N&5 } 10&3=; this is of the order of
1�10 the first estimate ever produced, namely(1) ueq &=�15, which was found
for an FPU system with Lennard�Jones interaction potential. The integra-
tions were performed for N=200 and up to a fixed time t*=107 tmin . Such
a choice for N and t* was dictated just by our available computing power.

Then we investigated our model, with typically N=200. The ``macro-
scopic'' state of the system was described by a pair (T, u) where T is the
temperature (i.e., twice the time-averaged specific energy of the gas) and u
the crystal's time-averaged specific energy. The initial data too were charac-
terized by a pair (T, u), because for the gas particles the positions were just
taken randomly from a uniform distribution in the interval (xN , L), while
the velocities were taken randomly from a Gaussian distribution with zero
mean and suitable standard deviation; the initial data for the FPU particles
were taken in such a way that the normal modes had all the same energy u.
By the way, in the considered range of energies the anharmonic contribu-
tion to the FPU system energy was usually negligible.

First of all we checked that above the equipartition threshold every-
thing goes as expected in classical statistical mechanics. Indeed, by taking
initial data T0 and u0 greater than ueq , we found that after rather short
times there was equipartition between gas and crystal, namely one had
u&T. Consequently, for the specific heat per particle CV =�u��T of the
crystal we found above the equipartition threshold the ``classical'' Dulong�
Petit value cV =1 (namely twice the specific heat cgas

V of the gas, which in
the used units has the value cgas

V =1�2).
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Our main purpose is then to extend the curve of u versus T to the
range below ueq , where metastable phenomena are expected, with a corre-
sponding dependence of the results on the observation (or waiting) times.
We organized the computations as follows. First of all, the observations
were made up to a fixed waiting time t*, to be considered as a parameter.
We start with the complete system (gas+crystal) in a given initial state
characterized by data (T� 0 , u~ 0) in the sense described above, and let the
complete system evolve up to time t*, registering the ``final'' state (T1 , u1).
Then we take new ``initial'' data (T� 1 , u~ 1)=(T1+2T, u1) with a given 2T
(i.e., we change the gas temperature, while keeping for the crystal's specific
energy the previous ``final'' value), and let again the complete system relax
up to the waiting time t*, registering the final values (T2 , u2); the proce-
dure is then iterated, so building up a sequence of ``final'' states (Ti , ui ),
i=1,..., n. One has thus an ideal curve u=u(T ) interpolating such points
(Ti , ui ) in the (T, u) plane, which gives the putative curve expressing the
``thermodynamic internal energy'' u as a function of temperature T for the
FPU system; the derivative cV (T )=(�u��T )(T ) then gives the corre-
sponding specific heat. More precisely, borrowing the terminology from
spin glasses phenomenology, (17) we say that the curve and the specific heat
thus found correspond in fact to a definite process, characterized by the
parameters t*, T0 , u0 and 2T. In the case 2T<0 one speaks of a uniform
cooling process, and the quantity |2T |�t* is called the cooling rate; heating
processes and heating rates are analogously defined.

The main results concerning the region below ueq are reported in Fig. 1,
where two ``curves'' u versus T are given, for N=200, t*=6 } 106 tmin and

Fig. 1. The energy of the FPU system versus temperature T (i.e., twice the gas energy) for
a cooling process starting from equipartition (upper curve) and for a heating process starting
from the origin (lower curve).
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|2T |=10&4= or |2T |=1.35 } 10&4=, respectively. The upper curve refers to
a uniform cooling process starting from the equipartition curve u=T, while
the lower one corresponds to a uniform heating process starting from near
the origin (T0=0, u0=0). The most relevant features seem to be that:

(1) the two curves, instead of essentially coinciding with the equipar-
tition curve u=T as for high temperatures, are here manifestly distinct, so
that one is in presence of a kind of hysteresis phenomenon; notice in par-
ticular that on the upper (cooling) curve there exists a non-vanishing
``residual'' energy U0=U(0), with U0 &0.5 } 10&3N=. Thus we can say that
in our FPU system there exists an analogue of what in spin glasses theory
is called the freezing temperature Tf , which moreover for realistic systems
(and with the present choice for the parameters t* and 2T ) is about one
order of magnitude less than the equipartition threshold Teq .

(2) Concerning the specific heat below the freezing temperature, it
clearly tends to zero for vanishing temperatures on the heating curve, and
the same was found for all other heating curves we produced, not reported
here. The situation is a little more complicated on the cooling curve,
because the only visible thing is that the specific heat is lower than the
classical Dulong�Petit value. The impression we got from several other
cooling curves, not reported here, is that on all of them the specific heat
actually tends to zero, although the available data are non completely con-
clusive; indeed, in general, we found that the cooling curves present a form
which is much more ``fuzzy'' than the heating curves, for some reason
which is still unknown to us. Another interesting point concerning the
heating curve is that the specific heat seems to present a rather huge jump
in reaching the classical value. Actually, in several instances we observed
``S-shaped'' curves of the type familiar in elementary phase transitions, but
we do not insist on this point here.

(3) Concerning temperature, in situations as those of the lower
(heating) curve of Fig. 1 one sees that the energy of the crystal is much
smaller than the temperature defined in this paper (namely as coinciding
with that of the ``calorimeter�thermometer''). So it is clear that the tem-
perature here considered can be substantially different from that defined in
the works, (8, 9) i.e., essentially as the average kinetic energy of the FPU par-
ticles. Which definition should be chosen is then an interesting question of
principle.

It is thus clear that, within the given waiting time t*, one can distinguish
in the (T, u) plane between a ``classical'' thermodynamic domain, above the
freezing temperature Tf , and a ``non-classical'' one below Tf , the latter
being characterized by the fact that the temperature T does not uniquely
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define the internal energy u. This should correspond to the fact that, for the
compound system, in the latter region one has effective non-ergodicity (or
``broken ergodicity,'' in the standard spin glasses terminology(18)), in the
sense that the energy surfaces appear to be subdivided into domains that
are invariant, at least up to the considered waiting time. One might expect
that the classical value of the specific heat would be obtained at any tem-
perature for an infinite waiting time, but no proof of this is available.
However, the analytical estimates mentioned in the introduction suggest
that the waiting time required to get equipartition increases with an
exponential-like behavior as temperature is decreased.

An illustration of the dependence of the results on the waiting time is
given in Fig. 2. We performed n different runs corresponding to different
initial data (T0, i , u0, i ), i=1,..., n, all on a curve parallel to the equiparti-
tion curve, precisely on the curve u=T+0.4, and let the system evolve, for
each of such initial data, up to a sequence of increasing times tk=kt*,
k=1,..., K. The ``final'' values (Tk, i , uk, i ) are reported in the figure for
t*=1.5 } 106 tmin and K=8. These results show that, by increasing the wait-
ing time from 1�4 to twice that of Fig. 1, one essentially reaches equiparti-
tion for temperatures higher than 10&3; but such a time is not sufficient for
lower temperatures, where moreover it appears that the data might be
compatible with an exponential-like dependence of the relaxation time
on 1�T.

The dependence of the results on the common number N of particles
of gas and crystal was also investigated, but not in a systematic way; the

Fig. 2. Illustrating how the rate of approach to equipartition depends on temperature. The
initial data (not reported in the figure) were on the curve u=T+0.4, and the ``final'' states
are reported for times tk=kt*, k=1,..., 8, with t* having a value 1�4 of that in Fig. 1.
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impression we got from our preliminary results is that the freezing tem-
perature Tf should be intensive (i.e., independent of N ) for large enough N.
We plan to come back to this important problem at an analytical level.

3. DISCUSSION

In the present paper we pointed out that a realistic implementation of
the specific heat measurement for FPU systems requires taking into
account the interaction of the system with a calorimetric substance. To this
end we introduced a simple model inspired by a classical one studied by
Poincare� , and reported the results of some numerical computations. The
main result we found is that the FPU system seems to present at low tem-
peratures a behavior of glassy type, with its characteristic phenomena of
aging and hysteresis, due to the largeness of the relevant relaxation times
of equipartition between the system and the calorimetric substance. In par-
ticular, in the frame of the philosophy of finite observation or waiting times
typical of glasses theory, the specific heat of the FPU system appears to
vanish for vanishing temperatures.

Two main problems seem to remain open concerning the glassy
behavior: whether analytical proofs can be produced, and whether it is
observed in actual experiments. Concerning the first point, no strict
analytical proof is presently available in the thermodynamic limit, although
some partial results might appear to be promising.

Concerning the second point, no direct observation of glassy
behaviour for crystals is known to us. However, we would like to point out
that the taking into account of the relaxation time to equilibrium between
a system and a measuring apparatus is not at all new, and is instead a
rather common fact in applied physics. The main example we quote is just
the measurement of the specific heat of diatomic molecules through
measurements of the speed of sound at various frequencies. Indeed, the
existence itself of sound dispersion just means that the ``transfer of internal
energy through collisions'' in the molecules (see ref. 19), depending on the
wave frequency, in fact depends on the waiting time; as a special case, the
static specific heat corresponds indeed to infinite waiting times of the
measuring apparatus, i.e., to zero frequency. This example is particularly
relevant, because it was just in order to understand sound dispersion that
the mathematical technique of Landau and Teller, (20) now so popular for
the general study of adiabatic invariants, (21, 15) was introduced. Similar con-
cepts were applied repeatedly in plasma physics by a group around
O'Neil(22, 23) (see also ref. 24). For spin glasses, phenomena analogous to
the frequency dependence of the speed of sound are also familiar; for exam-
ple, in ref. 25 (see p. 5) it is said that ``the freezing temperature turns out to
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depend on the frequency of the applied magnetic field,'' while in ref. 17,
p. 302 one finds that ``the position of the jump occurs when the time scale {
for the molecular dynamics becomes comparable to the natural time scale of
the experimentator.''

Finally, as a comment of an historical type, we would like to recall
that the deepest discussion of the relevance of relaxation times in defining
the thermodynamic energy U, implying that in general the latter should be
distinguished from the mechanical energy E and that a residual energy U0

might be present at zero temperature, is probably due to Boltzmann him-
self (26, 27) (see also the works of Jeans(28�30)). Boltzmann's preferred exam-
ple was his beloved model of rigid spheres, whose energy is constituted of
a translational and of a rotational part. Due to the mutual collisions, the
translational part is in general quite rapidly exchanged and equally shared
among the different spheres, but in general this is not the case for the rota-
tional part, which for example is not at all exchanged for perfectly smooth
spheres, thus remaining equal to the initial one; there is instead an
exchange in the case of rough spheres, but the actually exchanged amount
depends on the particular model. A modern illustration of a similar effect
involving centers of mass and vibrational energies was given in ref. 31 for
a model of diatomic molecules (see ref. 16 for the analytical estimates),
while a model of rotators, even nearer to Boltzmann's example, was dis-
cussed in ref. 32. So, according to Boltzmann, in any concrete case one fixes
a waiting time t*, and then takes as internal energy U only that portion of
the mechanical energy which is actually exchangeable within such fixed
waiting time. And this is exactly what we were doing in the present paper.
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